
47

Data : M , POsToMove

Result: migrate partition objects in POsToMove

begin
/∗ STEP 1: collect entities to process and clear partitioning data. See
§4.4.1 ∗/
for each Md

i ∈ POsToMove do
insert Md

i into entitiesToUpdate[d];
reset partition classification and P;
for each M q

j ∈ {∂(Md
i )} do

insert M q
j into entitiesToUpdate[q];

reset partition classification and P;
endfor

endfor
/∗ STEP 2: determine residence partition. See §4.4.2 ∗/
M setResidencePartition(POsToMove, entitiesToUpdate[q]);
/∗ STEP 3: update partition classification and collect entities to remove.
See §4.4.3 ∗/
for d ← 3 to 0 do

for each Md
i ∈ entitiesToUpdate[d] do

determine partition classification;
if Plocal /∈ P[Md

i ]
insert Md

i into entitiesToRemove[d];
endif

endfor
endfor
/∗ STEP 4: exchange entities. See §4.4.4 ∗/
for d ← 0 to 3 do

M exchangeEnts(entitiesToUpdate[d]);
endfor
/∗ STEP 5: remove unnecessary entities. See §4.4.5 ∗/
for d ← 3 to 0 do

for each Md
i ∈ entitiesToRemove[d] do

if Md
i is on partition boundary

remove copies of Md
i on other partitions;

endif
remove Md

i ;
endfor

endfor
/∗ STEP 6: update ownership. See §4.4.6 ∗/
for each P d

i in P do
owning partition of P d

i ← the poorest partition among P[P d
i ];

endfor
end

Algorithm 4.2: M migrate(M , POsToMove)



Note:

• Term ’partition’ in Algorithm 4.2 means ’partition’ or ’part’ in ITAPS
parallel interface terms.

• There are 6 steps in the migration algorithm, and 5 steps of them are
involved with communications (except STEP 3).

Algorithm Input Data:

• M, a distributed mesh with partition model P stored in each part.
Entity’s partition classification and remote copies are pre-computed.

• POsToMove, a list of partition objects to migrate and their destina-
tion part ids.

Result: Migrate partition objects in POsToMove

• STEP 1: Collect entities to process and clear their partition classifi-
cations.

In STEP 1, the entities collected in entitiesToUpdate include:

– Md
i ∈ entitiesToUpdate;

– For each Md
i , all downward entities that bound Md

i , and their
remote copies on other parts.

If an entity on one part is in entitiesToUpdate and has remote copies,
its remote copies on other parts should also be collected into enti-
tiesToUpdate through one round of communication.

• STEP 2: determine residence parts where each mesh entity in enti-
tiesToUpdate will exist after migration.

Firstly, the residence parts for the entities in entitiesToUpdate are
decided on each part. Then one round of communication is performed
to exchange residence parts of entities on the part boundaries to unify
them between remote copies.

• STEP 3: update partition classification for each Md
i ∈ entitiesToUp-

date. For each Md
i , if its residence parts does not include its current

local part, collect it into entitiesToRemove.

No communication.

1



• STEP 4: exchange entities in entitiesToUpdate from dimension 0 to
3, and update remote copies.

This step requires at least 3 rounds of communications: sending mes-
sages to destination parts to create entities, then destination parts
sending back new entities created, finally allowing all copies know other
remote copies.

In each round of communication, different copy of an entity may con-
trol the flow of messages.

• STEP 5: remove unnecessary entities in entitiesToRemove from di-
mension 3 to 0.

If a mesh entity to remove is on the part boundary, its remote copies
on other parts must be removed through one round of communication.

• STEP 6: update the ownership for each partition model entity P d
i

stored in the partition model P, based on poor-to-rich ownership rule.

One round of communication is performed to collect the number of
partition objects on each part, and then the ownerships are decided
based on the number of partition objects.

2


